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• Bats are the likely zoonotic origin of
SARS-CoV-1 and SARS-CoV-2.

• The local number of coronaviruses is
correlated with bat species richness.

• Climate change has shifted the global
distribution of bats.

• Bat richness has strongly increased in
the likely origin of SARS-CoV-1 and 2.

• Climate change may have been an im-
portant factor in the outbreaks of the
two viruses.
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Bats are the likely zoonotic origin of several coronaviruses (CoVs) that infect humans, including SARS-CoV-1 and
SARS-CoV-2, both of which have caused large-scale epidemics. The number of CoVs present in an area is strongly
correlatedwith local bat species richness,which in turn is affected by climatic conditions that drive the geograph-
ical distributions of species. Herewe show that the southern Chinese Yunnan province and neighbouring regions
in Myanmar and Laos form a global hotspot of climate change-driven increase in bat richness. This region coin-
cides with the likely spatial origin of bat-borne ancestors of SARS-CoV-1 and SARS-CoV-2. Accounting for an es-
timated increase in the order of 100 bat-borne CoVs across the region, climate changemay have played a key role
in the evolution or transmission of the two SARS CoVs.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Over 60% of emerging infectious disease events worldwide can be
traced back to zoonoses, most of which originate in wildlife (Jones
r Climate Impact Research,

yer).
et al., 2008). Bats have a special place amongst animal pathogen hosts
in that they carry the highest proportion of zoonotic viruses of all mam-
malian orders (Olival et al., 2017; Luis et al., 2013). Coronaviruses
(CoVs) account for over a third of the sequenced bat virome (Banerjee
et al., 2019), corresponding to an estimated more than 3000 different
CoVs carried by the world's bats (Anthony et al., 2017a). Several CoVs
known to infect humans have very likely originated in bats (Banerjee
et al., 2019; Cui et al., 2019), including the three types associated with
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human fatalities: the Middle East respiratory syndrome (MERS) CoV
(Anthony et al., 2017b; Memish et al., 2013) and severe acute respira-
tory syndrome (SARS) CoV 1 (Lau et al., 2005; Li et al., 2005) and 2
(Latinne et al., 2020; Zhou et al., 2020).

Strains of CoV found in bats in the southern Chinese Yunnan prov-
ince currently most closely resemble both SARS-CoV-1 (Hu et al.,
2017) and SARS CoV-2 (Zhou et al., 2020), suggesting this or
neighbouring regions in Myanmar and Laos as plausible places of origin
of the bat-borne ancestors of the two lineages (Cyranoski, 2020). These
regions also comprise the native habitat of masked palm civits (Paguma
larvata) and Sunda pangolins (Manis javanica) (IUCN, 2020), which are
assumed to have acted as intermediate hots that eventually transmitted
SARS-CoV-1 (Cui et al., 2019; Guan et al., 2003) and SARS-CoV-2 (Zhou
et al., 2020; Xiao et al., 2020), respectively, to humans. Captured civets
and pangolins carrying these viruses are likely to have been transported
to wildlife markets in Guangdong and Wuhan, respectively (Hassanin
et al., 2020), where the initial outbreaks in humanpopulations occurred.

The number of CoVs present in an area is strongly correlated with
local bat species richness (Anthony et al., 2017a). An increase in local
bat richness may therefore increase the probability that a CoV with po-
tentially harmful properties for human life is present, transmitted, or
evolves in the area. Species richness, in turn, is affected by climate
change, which drives the geographic distributions of species by altering
the suitability of ecological habitats, forcing species to disappear from
some areas whilst allowing them to expand in others (Chen et al.,
2011; Hickling et al., 2006; Parmesan, 2006). These range shifts impact
not only the spatial distribution of zoonoses directly by introducing
their hosts to new areas, but also lead to changes in species composition
and ecology, which can result in novel host-pathogen interactions that
may create new transmission pathways or facilitate the evolution of
harmful disease variants (Altizer et al., 2013; Carlson et al., 2020;
Hoberg and Brooks, 2015; Patz et al., 1996; Retel et al., 2019). Given
these mechanisms, understanding how the global distribution of bat
species, and therefore of bat-borne CoVs (Anthony et al., 2017a), has
shifted as the result of climate change may be an important step to-
wards reconstructing the origin of CoV outbreaks in humans.

Herewe estimated how climate change has impacted global bat spe-
cies richness over the last century. Our analysis reveals a global hotspot
of climate change-driven increase in bat richness in the geographical
region considered as the likely origin of the bat-borne ancestors of
SARS-CoV-1 and SARS-CoV-2. This provides a possible mechanistic
link between climate change and the emergence of the two viruses.

2. Material and methods

We estimated species-specific geographical ranges of the world's
bats based on global climatic conditions in the early 20th century and
at present day following the methodology of Jetz et al. (2007) and
Beyer and Manica (2020). This approach consists of first determining
the global distribution of natural vegetation corresponding to a given
climate, and then combining the derived vegetation maps with data
on the spatial distribution and vegetation requirements of individual
species. Global vegetation maps were generated based on the CRU TS
v4.04 global dataset of observation-based annual reconstructions of
monthly mean temperature, precipitation, cloud cover, and minimum
temperature from 1901 to 2019 at a 0.5° grid resolution (Harris et al.,
2020). Climatological normals (i.e., 30-year averages) of these four var-
iables were calculated for the first and last available period of the obser-
vational data, 1901–1930 and1990–2019, respectively. Cloud coverwas
converted to the percentage of possible sunshine (Doorenbos and
Pruitt, 1984) and the annual minimum temperature was obtained as
the minimum of the monthly minimum temperatures. The derived
monthly temperature, precipitation, and sunshine, annual minimum
temperature, and 1901–1930 and 1990–2019 average atmospheric
CO2 concentrations (Tans and Keeling, 2020), were then used as inputs
for the BIOME4 global vegetation model (Kaplan et al., 2003). BIOME4
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simulates incoming solar radiation, photosynthesis, stomatal behaviour,
hydrology, competition, and ecosystem dynamics to determine the
dominant natural plant functional type (Kaplan et al., 2003), and has
been successfully validated against empirical data (Haxeltine and
Prentice, 1996; Hoogakker, 2016; Ni et al., 2000; Tang et al., 2009). In
this way, we estimated the global distribution of natural vegetation
based on the climatic conditions in the early 20th century and at
present.

The global distribution of bats at each of the two time periods was
then determined by combining the relevant vegetation map with two
types of species-specific data available for all known bats: extents of oc-
currence and habitat requirements (IUCN, 2020). Extents of occurrence
represent the outermost geographic limits of a species' observed or
projected occurrence (Gaston and Fuller, 2009); these spatial envelopes
do not account for the distribution of vegetation within that area and
therefore generally extend substantially beyond a species' actual distri-
bution (Gaston, 2013). Habitat requirements include one or more vege-
tation categories in which a species can occur. Extents of occurrence
were rasterised from their spatial polygon format to a 0.5° grid, and sub-
sequently refined by retaining only those grid cells where the previ-
ously estimated natural vegetation type, at the relevant time, was
included in the species' list of habitat requirements. In thisway, the geo-
graphical range of each individual bat species was estimated for the
early 20th century and for the present. Finally, the total bat species rich-
ness in each grid cell was obtained as the number of species whose es-
timated geographic range included the grid cell at the relevant time
period.

By design, our approach simulates bat distributions under the
climate-derived natural vegetation, not actual land cover. Whilst an-
thropogenic land use change has removed the natural vegetation type
in many areas, there are typically some remnants left nearby
(Ramankutty and Foley, 1999), making it likely that species can indeed
be found in the grid cells estimated as suitable in our analysis. Con-
versely, anthropogenic land use change may have led to increases in
local bat richness in areas where the natural vegetation is unsuitable;
however, these increases would not be attributable to the impact of cli-
mate change, which the approach used here specifically aims to assess.

3. Results and discussion

Areas estimated to have experienced significant increases in bat spe-
cies richness as the result of climate change-driven range shifts include
regions around Central Africa, several scattered patches in Central and
South America, and notably a large spatial cluster located in the south-
ern Chinese Yunnan province and neighbouring regions in Myanmar
and Laos (Fig. 1). This latter hotspot coincides with the region currently
considered as themost likely origin of the bat-borne ancestors of SARS-
CoV-1 and SARS-CoV-2 (Cyranoski, 2020). The estimated climate
change-driven increase of around 40 bat species across the region
(Fig. 1) corresponds to a rise in the local number of bat-borne CoV in
the order of 100 (±50) viruses, given that each bat species carries on
average 2.67 (±1.38) CoVs (Anthony et al., 2017a).

Given the inferred spatial origin of these two viral lineages, Fig. 1
provides evidence suggestive of a possible contributing role of climate
change in the evolution or interspecies transmission of SARS-CoV-1
and SARS-CoV-2, by driving a substantial increase in bat, and therefore
bat-borne CoV (Anthony et al., 2017a), richness across the region. This
process would have likely created significant opportunities for cross-
species viral transmission (Altizer et al., 2013; Carlson et al., 2020;
Hoberg and Brooks, 2015; Patz et al., 1996; Retel et al., 2019) that may
have facilitated the eventual spill-over to humans. Evidence of a similar
potential contribution of climate change is less pronounced in regions
associated with other CoVs that have infected humans, such as MERS-
CoV, for which a plausible origin of the bat-borne ancestor has been
placed in East Africa (Corman et al., 2014; Zumla et al., 2015), where
we estimated only small increases in bat richness.



Fig. 1. Estimated increase in the local number of bat species due to shifts in their geographical ranges driven by climate change between the 1901-1930 and 1990-2019 period. The
zoomed-in area represents the likely spatial origin of the bat-borne ancestors of SARS-CoV-1 and 2.
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Examining the climate change-driven shifts in the distribution of nat-
ural biomes and the habitat requirements of bat species in the region
around the southern Yunnan province (Fig. 2a) can provide insights
into the estimated increase in the local bat richness.Whilstmost forest bi-
omes in the area have not substantially changed in total size, our data
suggest a large-scale shift from tropical shrublands to tropical savannas
and deciduous woodland over the past century (Fig. 2b), driven by cli-
matic changes characterised by higher atmospheric CO2 levels, increased
temperature, altered precipitation patterns, and decreased cloud cover
(Fig. 2d-f). This process created a suitable environment formany bat spe-
cies occurring in the region that predominantly require forest type habi-
tats (Fig. 2c), explaining the marked increase in bat richness in Fig. 1.

Whilst the zoonotic and spatial origin of SARS-CoV-1 have been de-
termined with some certainty (Cyranoski, 2020), the details of the
origin of SARS-CoV-2 continue to be an active field of research
(Mallapaty, 2020). It is therefore important to note that our inference
that climate change may have played a role in the outbreak relies on
future evidence remaining supportive of the suggestion made
based on the genetic evidence available to date that the ancestor of
SARS-CoV-2 was bat-borne and occurred in the Yunnan province or
the neighbouring regions. Furthermore, the methods used here to sim-
ulate vegetation and to map bat ranges are not without uncertainties
and limitations (Beyer and Manica, 2020; Hallgren and Pitman, 2000);
further work using both alternative vegetation models (Sitch et al.,
2008) and species distribution models (Franklin, 2010) is therefore
needed to clarify the pattern suggested by our data. By mapping the
geographic ranges of bats based only on climatic conditions represented
by natural vegetation, we have aimed to isolate the effect of climate
change on global bat species richness. Other biotic and abiotic factors
not considered in our approach, such as hunting, invasive species, and
pollution, can also play significant roles in determining bat habitat suit-
ability (Frick et al., 2020) and require further study in the context of CoV
outbreaks. Investigating the important role of anthropogenic land use
change, in particular (Frick et al., 2020; Jones et al., 2013; Morse et al.,
2012), can benefit from satellite-based land cover datasets (Liu et al.,
2020; Sulla-Menashe et al., 2019), although global maps are available
only for the more recent past. Finally, estimated climate change-
driven shifts in the geographical distributions of pathogen-carrying spe-
cies will need to be integrated into epidemiological models in order to
quantitatively assess the role of climate change and the contribution
of specific climatic variables on viral sharing networks (Albery et al.,
2020; Carlson et al., 2020). These models also need to incorporate
other impacts of climate change, such as the effect of warmer climates
on the susceptibility of animal host species to pathogens (Roberts
et al., 2018) and that of microbial adaptation to higher temperatures
3

on the effectiveness of the human endothermy thermal barrier
(Casadevall, 2020).

Spill-overs of CoVs and other zoonoses to humans have been shown
to be closely linked to an increase in contact with pathogen-carrying
wildlife, driven by the expansion and intensification of agriculture,
hunting, and infrastructural development (Jones et al., 2013; Morse
et al., 2012; Bloomfield et al., 2020; Han et al., 2016; Gibb et al.,
2020a). To reduce the risk of future zoonotic spill-overs, it is crucial to
introduce measures to protect natural habitats, impose strong regula-
tions on wildlife hunting and trade, establish appropriate animal wel-
fare standards on farms, markets and transport vehicles, and
discourage high-zoonotic-risk dietary and medicinal customs (Nabi
et al., 2020; Petrovan, 2020) whilst accommodating the socio-
economic needs that drive current patterns. Sound understanding of
the ecological dynamics underlying zoonotic disease emergence is es-
sential for effective health and environmental planning (Campbell-
Lendrum et al., 2015; Gibb et al., 2020b) and for eliminating dangerous
and counterproductive practices such as bat persecution (Zhao, 2020).
In addition to thesemeasures, previous studies have stressed the impor-
tance of recognising the critical role of climate change in the emergence
and spread of infectious diseases (Altizer et al., 2013; Carlson et al.,
2020; Epstein, 2001; Harvell et al., 2002; Patz et al., 1996). Given the
possibility raised by our analysis that global greenhouse gas emissions
may have been a contributing factor in the SARS-CoV-1 and SARS-
CoV-2 outbreaks, we echo calls for decisive climate change mitigation,
including as part of Covid-19 economic recovery programmes
(Rosenbloom and Markard, 2020), as a means to minimise future zoo-
notic spill-overs and the tremendous social and economic damage asso-
ciated with them.
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Fig. 2.Environmental conditions andbat habitats in the likely spatial origin of the bat-borne ancestors of SARS-CoV-1 and2. (a) Area of study, defined as a 500 km radius disk centred in the
southern Yunnan province (101°E, 22°N). (b) Simulated relative distribution of natural biomes in the study area in the early 20th century (light blue bars) and at present (dark blue bars).
Grey flows represent shifts in biomes between the time periods. (c) Habitat requirements of bat species whose extent of occurrence (see Methods) overlaps with the study area.
Uncertainty bars represent upper and lower quartiles obtained from a bootstrap approach in which habitat requirements were determined for a set of 104 random re-samples, with
replacement, of these bat species. Proportions add up to more than 100% as species can have more than one suitable habitat type. (d)–(f) Boxplots representing the distribution of past
and present monthly temperature, precipitation, and cloud cover normals across the study area.
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