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Humans have regularly been threatened by emerging patho-
gens that kill a substantial fraction of all people born. Recent 
decades have seen multiple challenges from acute virus infec-
tions including SARS, MERS, Hendra, Nipah and Ebola. For-
tunately, all were locally contained. When containment is not 
immediately successful, as is likely for the novel betacorona-
virus SARS CoV-2 (CoV-2) (1, 2), we need to understand and 
plan for the transition to endemicity and continued circula-
tion, with possible changes in disease severity due to virus 
evolution and build-up of host immunity and resistance. 

CoV-2 is an emerging virus that causes COVID. The virus 
has a high basic reproductive number (R0) and which is trans-
missible during the asymptomatic phase of infection, both of 
which make it hard to control (3). However, there are six 
other coronaviruses with known human chains of transmis-
sion, which may provide clues to future scenarios for the cur-
rent pandemic. There are four human coronaviruses (HCoVs) 
that circulate endemically around the globe; they cause only 
mild symptoms and are not a significant public health bur-
den (4). Another two HCoV strains, SARS CoV-1 and MERS, 
emerged in recent decades and have higher case fatality ra-
tios (CFRs) and infection fatality ratios (IFRs) than COVID-
19 but were contained and never spread widely (5, 6). 

We propose a model to explore the potential changes in 
both transmission and disease severity of emerging HCoVs 
through the transition to endemicity. We focus on CoV-2 and 
discuss how the conclusions would differ for emerging coro-
naviruses more akin to SARS and MERS. Our hypothesis is 
that all HCoVs elicit immunity with similar characteristics, 
and the current acute public health problem is a consequence 
of epidemic emergence into an immunologically naïve 

population in which older age-groups with no previous expo-
sure are most vulnerable to severe disease. We use our esti-
mates of immunological and epidemiological parameters for 
endemic HCoVs to develop a quantitative model for endemic 
transmission of a virus with SARS-CoV-2 -like characteristics, 
including the age-dependence of severity. Our model explic-
itly considers three separate measures for immune efficacy 
that wane at different rates (fig. S1). 

Building on ideas from the vaccine modeling literature, 
immunity may provide protection in three ways (7). In its 
most robust form, “sterilizing” immunity can prevent a path-
ogen from replicating, thereby rendering the host refractory 
to reinfection. We term this property immune efficacy with 
respect to susceptibility, IES. If immunity does not prevent 
reinfection, it may still attenuate the pathology due to rein-
fection (IEP) and/or reduce transmissibility or infectiousness 
(IEI). Indeed, experimental reexposure studies on endemic 
HCoVs provide evidence that the three IE’s do not wane at 
the same rate (8, 9). Callow’s experimental study (8) shows 
that reinfection is possible within one year (relatively short 
IES); however, upon reinfection symptoms are mild (high IEP) 
and the virus is cleared more quickly (moderate IEI). Details 
on the derivation of the model can be found in section 2 of 
the supplementary materials (SM). 

We reanalyze a detailed dataset that estimates age-spe-
cific seroprevalence based on both IgM (acute response) and 
IgG (long-term memory) against all four circulating HCoVs 
in children and adults (10) to estimate parameter ranges for 
transmission and waning of immunity (see Fig. 1A). The rapid 
rise in both IgM and IgG seroprevalence indicates that pri-
mary infection with all four endemic HCoV strains happens 
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early in life, and our analysis of these data gives us an esti-
mate for the mean age of primary infection (MAPI) between 
3.4 and 5.1 years, with almost everyone infected by age 15 (see 
SM section 1 for details). The absence of detectable IgM titers 
in any individual over the age of 15 years suggests reinfec-
tions of adults causes a recall response, indicating that while 
CoV specific immunity may wane it is not lost. Whether im-
munity would wane to naïve levels in the absence of high 
pathogen circulation remains an open question. 

For most people to be infected so early in life—younger 
even than measles in the pre-vaccine era—the attack rate 
must exceed transmission from primary infections alone. The 
model shows a high attack rate can arise from a combination 
of high transmissibility from primary infections (i.e., high R0), 
waning of sterilizing immunity and significant transmission 
from reinfections in older individuals. The rapid waning of 
sterilizing immunity is also reported in experimental HCoV 
infections of humans which showed that reinfection is possi-
ble 1 year after an earlier infection, albeit with milder symp-
toms (IEP) and a shorter duration (IEI) (11). Figure 1B shows 
the plausible combinations of waning immunity and trans-
mission from reinfected individuals that are required to pro-
duce the MAPI observed in Fig. 1A, based on steady-state 
infection levels (see SM section 2.1 for details). Table 1 shows 
the ranges of the parameters used in our simulations. 

At the beginning of an outbreak, the age distribution of 
cases mirrors that of the population (Fig. 2A). However, once 
the demographics of infection reaches a steady state, our 
model predicts primary cases occur almost entirely in babies 
and young children, who in the case of COVID-19, experience 
a low CFR and a concomitantly low infection fatality ratio 
(IFR). Reinfections in older individuals are predicted to be 
common during the endemic phase and contribute to trans-
mission, but in this steady-state population, older individu-
als, who would be at risk for severe disease from a primary 
infection, have acquired disease-reducing immunity follow-
ing infection during childhood. The top panel of Fig. 3B illus-
trates how the overall IFR for CoV-2 drops dramatically, 
eventually falling below that of seasonal influenza (approxi-
mately 0.001) once the endemic steady-state is reached. 

The time it takes to complete the shift in IFR as endemic-
ity develops depends on both transmission (R0) and loss of 
immunity (ω and ρ), as is shown in Fig. 2B and fig. S4. The 
transition from epidemic to endemic dynamics is associated 
with a shift in the age-distribution of primary infections to 
lower age groups (Fig. 2A). This transition may take any-
where from a few years to a few decades depending on how 
fast the pathogen spreads. The rate of spread, measured by 
R0, is determined by a combination of viral properties and the 
frequency of social contacts, and may therefore be reduced by 
social distancing. The top panel shows the effect of reducing 
R0 to 2, whereas the middle and bottom panels show the 

dynamics for higher R0, which are more akin to those of CoV-
2 in the absence of control measures. If transmission is high, 
the model predicts a high case load and death rate in earlier 
years following emergence (Fig. 2 and fig. S5). In Fig. 2B we 
see that, as might be expected, longer lasting sterilizing im-
munity slows down the transition to endemicity. 

These results are robust to a more biologically realistic 
distribution for the duration of sterilizing immunity and the 
possibility that the generation of protective immunity re-
quires more than one infection (see SM section 3 and figs. S5 
to S9). 

Slowing down the epidemic through social distancing 
measures that reduce R0 to close to one flattens the curve, 
thus delaying infections and preventing most deaths from 
happening early on, affording critical time for the develop-
ment of an effective vaccine (fig. S10). If vaccine-induced IES 
and IEP immunity is similar to that induced by HCoV infec-
tions, the vaccine may usher in the endemic regime more 
quickly. The model code (see acknowledgments) provides a 
flexible scaffolding for studying alternative vaccination sce-
narios. Notably, the model predicts that once the endemic 
state is reached, mass vaccination may no longer be necessary 
to save lives (see SM section 4 and fig. S11). 

We can extend our predictions to two other potentially 
emerging coronavirus infections—SARS and MERS. Our 
model predicts that in the endemic state the IFR of a circu-
lating CoV depends primarily on the severity of childhood in-
fections. In the case of CoV-1, which is more pathogenic than 
CoV-2, we still expect a low disease burden in the endemic 
phase because CoV-1, like CoV-2, has a low IFR in the young 
(Fig. 3). However, data suggest not all emerging HCoVs follow 
this optimistic pattern; the overall IFR of an endemic MERS-
like virus would not decrease during the transition to ende-
micity as seen in Fig. 3B, and this is because disease severity 
(and IFR) is high in children, the age group expected to expe-
rience the bulk of primary cases during the endemic phase. 
In the endemic phase, a vaccination program against MERS 
would therefore be necessary to avoid excess mortality (fig. 
S11). 

The key result from our new model framework that ex-
plicitly recognizes that functional immunity to reinfection, 
disease and shedding are different is that, in contrast with 
infections that are severe in childhood, CoV-2 could join the 
ranks of mild, cold-causing endemic human coronaviruses in 
the long run. A critical prediction is that the severity of emer-
gent CoVs once they reach endemicity depends only on the 
severity of infection in children (Fig. 3) because all available 
evidence suggests immunity to HCoVs has short IES and mod-
erate IEI, leading to frequent reinfection throughout adult-
hood (11, 12) but strong IEP such that childhood infection 
provides protection from pathology upon reinfection in 
adulthood, as evidenced by the rarity of severe infections or 
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detectable IgM titers in adults. Strain-specific virulence fac-
tors, such as the shared cellular receptor, ACE-2, to which 
CoV-1, CoV-2 and the endemic strain NL63 all bind (13–16), 
may affect the CFR during the emergence phase but have lit-
tle impact on the severity of disease in the endemic phase. 
Because the four endemic HCoVs have been globally circulat-
ing for a long time and almost everyone is infected at a young 
age, we cannot ascertain how much pathology would result 
from a primary or even secondary case of any of these in an 
elderly or otherwise vulnerable person. 

The key insights come from how our model explicitly in-
corporates different components of immunological protec-
tion with respect to susceptibility, pathology and infectivity 
(IES, IEP and IEI) and their different rates of waning. In our 
analysis we hypothesized that these components of immunity 
for CoV-2 are comparable to those of endemic HCoVs, and 
this needs to be determined. Additionally, during the transi-
tion to endemicity, we need to consider how the IE’s depend 
on primary and secondary infections across ages (17) and how 
responses differ between vaccination and natural infection. 

Longitudinal analysis of CoV-1 patients provides an op-
portunity to measure the durability of immune memory in 
the absence of reexposure. The only long-term study we know 
of that follows CoV-1-specific antibodies suggests they wane 
faster compared with antibodies to other live viruses and vac-
cines such as measles, mumps, rubella and smallpox (18) and 
fall below the threshold of detection in six years (19). In con-
trast to antibody responses, memory T cells persist for much 
longer periods (19, 20) and confer protection in animal model 
systems (21). 

We further consider the effects of strain variation both for 
natural infection and vaccination. Strain variation and anti-
body escape may occur in endemic strains (22), however the 
fact that symptoms are mild suggests that immunity induced 
by previously seen strains is nonetheless strong enough to 
prevent severe disease. Indeed among HCoVs, frequent rein-
fections appear to boost immunity against related strains 
(12). However, the effect of strain variation may differ for vac-
cine-induced immunity, especially in light of the narrower 
epitope repertoire of many currently authorized vaccines. 

If frequent boosting of immunity by ongoing virus circu-
lation is required to maintain protection from pathology, 
then it may be best for the vaccine to mimic natural immun-
ity insofar as preventing pathology without blocking ongoing 
virus circulation. Preliminary results suggest the adenovirus-
based vaccine is better at preventing severe than mild or 
asymptomatic infections (23), and it will be important to col-
lect similar data for the other vaccines. Should the vaccine 
cause a major reduction in transmission, it might be im-
portant to consider strategies that target delivery to older in-
dividuals for whom infection can cause higher morbidity and 
mortality, while allowing natural immunity and transmission 

to be maintained in younger individuals. During the transi-
tion to endemicity, primary CoV-2 infections will frequently 
occur in older individuals, and we need to determine if im-
munity induced by infection or vaccination in adulthood is 
similar to that produced by natural infections in childhood. 
Thus far, there have been few reinfections reported with CoV-
2, and disease severity has varied (24); the only population-
level study of reinfection of which we are aware estimates a 
low rate of reinfection within the first six months after pri-
mary infection and mild disease upon reinfection (25), but 
further analysis and monitoring are vital. 

The findings presented here suggest that using symptoms 
as a surveillance tool to curb the virus’s spread will become 
more difficult, as milder reinfections increasingly contribute 
to chains of transmission and population level attack rates. 
In addition, infection or vaccination may protect against dis-
ease but not provide the type of transmission-blocking im-
munity that allows for shielding (26) or the generation of 
long-term herd immunity (2). 

The details of the change in overall IFR through the tran-
sient period will be impacted by a wide array of factors, such 
as age-specific human contact rates (27) and susceptibility to 
infection (28), as well as improvement in treatment protocols, 
hospital capacity, and virus evolution. The qualitative result 
of mild disease in the endemic phase is robust to these com-
plexities, but quantitative predictions for the transient phase 
will depend on a careful consideration of these realities and 
how they interact with the dynamics of infection and compo-
nents of immunity (29). 

The changes in the IFR over time predicted by the model 
have implications for vaccination strategy against current 
and future emerging HCoVs. Social distancing and an effec-
tive vaccine are critical for control during a virgin epidemic 
and the transition out of it, but once we enter the endemic 
phase, mass vaccination may no longer be necessary. The ne-
cessity for continual vaccination will depend on the age-de-
pendence of the IFR. If primary infections of children are 
mild (CoV-1 and CoV-2), continued vaccination may not be 
needed as primary cases recede to mild childhood sniffles. If, 
on the other hand, primary infection is severe in children (as 
for MERS), then vaccination of children will need to be con-
tinued. 

From an ecological and evolutionary perspective, our 
study opens the door to questions regarding the within-host 
and between-host dynamics of human immunity and patho-
gen populations in the face of IE’s with different kinetics. It 
also opens the question of how these IE’s interplay with 
strain cross-immunity, which is likely relevant within the al-
pha- and beta-coronaviruses. Considering data and model 
predictions from emergence through endemicity of HCoVs 
revealed a framework for understanding immunity and vac-
cination that may apply to a variety of infections, such as RSV 
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and seasonal influenza, which share similar age distributions 
and immune responses. 
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Table 1. Characteristics of coronavirus-immune interactions and relevant parameter ranges. 
Characteristic and symbol Estimates from 

literature 
Value  

(range) 
Citations 

Primary infectious period 
(1/γ) 
 
 

≥5.6 days 
∼10 days 

9 days (8) 
(30) 

Primary transmissibility 
[R0 = β/(γ + μ)] 

4 to 9 2 to 10 (31) 

Secondary transmissibility 
(relative to primary, ρ) 

0.35 
0.04 to 0.97 

0 to 1 (8) 
Fig. 2 and fig. S2 

Duration of sterilizing 
immunity (1/ω) 

0.91 years 
1.67 years 

0.5 to 2 years 

0.5 to 10 years (8) and SM section 5 
(8) and SM section 5 

(11, 32) 

Relative pathology of  
reinfections 

mild –  (8) 

Age-specific IFR  
(primary infections) 

SARS 
MERS 

COVID-19 
 

See  
Fig. 3 

(33) 
(5) 
(34) 
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Fig. 1. A low mean age of primary infection suggests partially transmissible reinfections are common. 
(A) Mean proportion seropositive for IgG (green, top lines) and IgM (purple, bottom lines) against the four 
endemic HCoV strains [dots connected by dashed lines; vertical lines represent the 95% CI; data from  
Zhou et al. (10)]. The mean age of primary infection (MAPI) based on IgM data with 95% CI is shown in text 
inside each panel (see SM for details). (B) MAPI as a function of waning of sterilizing immunity (ω, y axis) 
and transmissibility of reinfections (ρ, x axis). The MAPI was calculated from the equilibrium dynamics of 
the model shown in fig. S1 and supplementary equations 3 to 9 with a plausible basic reproductive number 
(R0 = 5) and 0 < ω < 2 and 0 < ρ < 1. See SM section 2.1 for details. The white band in indicates the plausible 
combinations of values of ρ and ω consistent with the MAPI for HCoVs estimated in (A). [See fig. S1 for 
parallel figures calculated at extreme plausible values for R0 (i.e., R0 = 2 and R0 = 10).] 
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Fig. 2. The time scale of the transition from epidemic to endemic dynamics for emerging coronaviruses 
depends on R0 and the rate of immune waning. Transition from epidemic to endemic dynamics for emerging 
HCoVs, simulated from an extension of the model presented in fig. S1 that includes age structure. Demographic 
characteristics (age distribution, birth, and age-specific death rates) are taken from the United States, and 
seasonality is incorporated via a sinusoidal forcing function (see SM section 2.2). Weak social distancing is 
approximated by R0 = 2. (See figs. S9 to S11 for strong social distancing results, R0 < 1.5.) (A) Daily number of 
new infections (black line, calculations in SM section 2.3). An initial peak is followed by a low-incidence endemic 
state (years 5 to 10 shown in the inset). A higher R0 results in a larger and faster initial epidemic and more rapid 
transition to endemic dynamics. The proportion of primary cases in different age groups changes over time 
(plotted in different colors), and the transition from epidemic to endemic dynamics results in primary cases 
being restricted to younger age groups. Parameters for simulations: ω = 1 and ρ = 0.7. (B) Time for the average 
IFR (6-month moving average) to fall to 0.001, the IFR associated with seasonal influenza. Gray areas represent 
simulations where the IFR did not reach 0.001 within 30 years. The time to IFR = 0.001 decreases as the 
transmissibility (R0) increases and the duration of sterilizing immunity becomes shorter. Results are shown for 
ρ = 0.7. See SM section 2.3 and figs. S4 to S7 for sensitivity analyses and model specifications. 
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Fig. 3. The overall infection fatality ratio (IFR) of emerging coronaviruses once they reach endemicity is 
strongly influenced by the IFR of young children in the initial epidemic. The age dependence of the IFR 
determines how the overall IFR changes during the transition from epidemic to endemic dynamics for emerging 
CoVs. (A) Age dependence of the IFRs for the three emerging CoVs. Primary infections with MERS and CoV-1 
are consistently symptomatic and the IFR and CFR are therefore assumed to be the same. CoV-1 and CoV-2 
have J shaped profiles, with a monotonic increase in IFR with age. The age-specific IFR for MERS is U shaped, 
with high mortality in the young and old age groups. Details of the statistical smoothing are described in SM 
section 6. (B) The overall IFR changes during the transition to endemic dynamics. These calculations assume 
deaths due to reinfections are negligible. We relax this assumption to allow for a slower build-up of immunity 
and possible death due to secondary infection in figs. S5 to S9 and show the qualitative results do not change. 
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